
RD-RlaS 172 EYALURTION OF A PRALLEL CHART PQRSER(U) NEW YORK UNIV ±.'1F17MY COURANT INST OF NRTHENATICRL SCIENCES

R (MGISHNAN ElT AL. SEP 97 PROTEUS-M-lI N96114-BS-K-6163

UNCLSSIFIED, F/G 12/5 M

son

,., IIIlgtl, 2. .
11111 1120

M-0,

S-25 A
,

00) Evaluation of
a Parallel Chart Parser

I Ralph Grishman and Mahesh ChitraoPROTEUS Project Memorandum #10
September 1987

~i./

' ROTEU S
PROEECT

$DEC I 5 198;r PROTECT

ApYvd Y",; ' i..."

'.5

*)epartment. of Computer Science
: Courdut Institute of M1athemdti'Il Science'(s

" New York University

p,.
.. ". '. -I

', -

Evaluation of
a Parallel Chart Parser

Ralph Grishman and Mahesh Chitrao
PROTEUS Project Memorandum #10

September 1987

cDT r i

OEC 15 987"'

D .

| ApIpIov'.', .. , .. .

This report is based upon work supported by the
Defense Advanced Research Projects Agency under Contract

N00014-85-K-0163 from the Office of Naval Research,
by the National Science Foundation under

Grant No. DCR-8501843, and by the International
Business Machines Corp. under contract 534816.

I

Evaluation of a Parallel Chart Parser

Ralph Grishman and Mahesh Chitrao
Computer Science Department

New York University
251 Mercer Street

New York, NY 10012

ABSTRACT
We describe a parallel implementation of a chart parser,. for a shared-memory multipro-
cessor. The spee.ups obtained with this parser have been measured for a number of
small naturaloanguage grammars. For the largest of these, part of an operational
question answering system, the parser ran 5 to 7 times faster than the serial version.

1. Introduction

We report here on a series of experiments to determine whether the parsing com-
ponent of a natural language analyzer can be easily converted to a parallel program
which provides significant speed-up over the serial program.

These experiments were prompted in part by the rapidly growing availability of
parallel processor systems. Parsing remains a relatively time-consuming component of
language analysis systems. This is particularly so if constraints are being systematically
relaxed in order to handle ill-formed input (as suggested, for example, in [Weischedel
and Sondheimer 19831) or if there is uncertainty regarding the input (as is the case for
speech input, for example). This time could be reduced if we can take advantage of the
new parallel architectures. Such a parallel parser could be combined with parallel imple-
mentations of other components (the acoustic component of a speech system, for exam-
ple) to improve overall system performance.

2. Background . j
There have been a number of theoretical and algorithmic studies of parallel parsing,

beginning well before the current availability of suitable experimental facilities.
For general context-free grammars, it is possible to adapt the Cocke-Younger-

Kasami algorithm [Aho and Ullman 1972, p. 314 ff] for parallel use. This algorithm,
which takes time proportional to n3 (n = length of input string) on a single processor, can
operate in time n using n2 processors. The matrix form of this algorithm is well suited to
large arrays of synchronous processors. The algorithm we describe below is basically a ,'

-i

-1-

WI

CYK parser with top-down filtering1, but the main control structure is an event queue
rather than iteration over a matrix. Because the CYK matrix is large and typically
sparse 2, we felt that the event-driven algorithm would be more efficient in our environ-
ment of a small number of asynchronous processors (<<n2 for our longest sentences) and
grammars augmented by conditions which must be checked on each rule application and

which vary widely in compute time.

[Cohen et al. 1982] present a general upper bound for speed-up in parallel parsing,
based on the number of processors and properties of the grammar. Their more detailed
analysis, and the subsequent work of Sarkar and Deo [1985] focus on algorithms and

,: speed-ups for parallel parsing of deterministic context-free grammars. Most program-
ming language grammars are deterministic, but most natural language grammars are not,
so this work (based on shift-reduce parsers) does not seem directly applicable.

Experimental data involving actual implementations is more limited. Extensive
measurements were made on a parallel version of the Hearsay-U speech understanding
system [Fennel and Lesser 19771. However, the syntactic analysis was only one of many
knowledge sources, so it is difficult to make any direct comparison between their results
and those presented here. Bolt Beranek and Newman is currently conducting experi-
ments with a parallel parser quite similar to those described below [Haas 1987]. BBN
uses a unification grammar in place of the procedural restrictions of our system. At the
time of this writing, we do not yet have detailed results from BBN to compare to our
own.

3. Environment

Our programs were developed for the NYU Ultracomputer [Gottlieb et al., 1983], a
shared-memory MIMD parallel processor with a special instruction, fetch-and-add, for
processor synchronization. The programs should be easily adaptable to any similar
shared memory architecture.

The programs have been written in ZLISP, a version of LISP for the Ultracomputer
which has been developed by Isaac Dimitrovsky. Both an interpreter and a compiler are
available. ZLISP supports several independent processes, and provides both global vari-
ables (shared by all processes) and variables which are local to each process. Our pro-
grams have used low-level synchronization operations, which directly access the fetch-
and-add primitive. More recent versions of ZLISP also support higher level synchroniza-
tion primitives and data structures such as parallel queues and parallel stacks.

4. Algorithms

Our parser is intended as part of the PROTEUS system [Ksiezyk et al. 1987]. PRO-
TEUS uses augmented context-free grammars -- context-free grammars augmented by
procedural restrictions which enforce syntactic and semantic constraints.

' We also differ from CYK in that we do not merge different anMyses of the same string as the same symbol. As a result, our
prcedure would notoperate in linear time for generbu (ambiguous) grammar.

2 For grammar #4 gliven below and a 2-word sentence, the matrix would have roughly 15000 entries, of which only about
1000 enri es are filled.

-2.

%- • , u i I itI d l' - " ++ P ++ .+ .% .- + ' : = t

The basic parsing algorithm we use is a chart parser [Thompson 1981, Thompson
and Ritchie 1984]. Its basic data structure, the chart, consists of nodes and edges. For an
n word sentence, there are n+1 nodes, numbered 0 to n. These nodes are connected by
active and inactive edges which record the state of the parsing process. If A -4 W X Y Z
is a production, an active edge from node n1 to n2 labeled by A - W X. Y Z indicates
that the symbols W X of this production have been matched to words n1 +1 through n2 of
the sentence. An inactive edge from n1 to n2 labeled by a category Y indicates that words
n,+l through n2 have been analyzed as a constituent of type Y. The "fundamental rule"
for extending an active edge states that if we have an active edge A -- W X. Y Z from nI
to n2 and an inactive edge of category Y from n2 to n3, we can build a new active edge A
-- WX Y. Z from n1 to n 3 . If we also have an inactive edge of type Z from n3 to n4, we
can then extend once more, creating this time an inactive edge of type A (corresponding
to a completed production) from n1 to n4.

If we have an active edge A - W X . Y Z from n1 to n2, and this is the first time we
have tried to match symbol Y starting at n2 (there are no edges labeled Y originating at
n2), we perform a seek on symbol Y at n2: we create an active edge for each production

*which expands Y, and try to extend these edges. In this way we generate any and all ana-
lyses for Y starting at n2. This process of seeks and extends forms the core of the parser.
We begin by doing a seek for the sentence symbol S starting a node 0. Each inactive

*-, edge which we finally create for S from node 0 to node n corresponds to a parse of the
sentence.

The serial (uniprocessor) procedure 3 uses a task queue called an agenda. Whenever
a seek is required during the process of extending an edge, an entry is made on the
agenda. When we can extend the edge no further, we go to the agenda, pick up a seek
task, create the corresponding active edge and then try to extend it (possibly giving rise
to more seeks). This process continues until the agenda is empty.

Our initial parallel implementation was straightforward: a set of processors all exe-
d cute the main loop of the serial program (get task from agenda / create edge / extend

edge), all operating from a single shared agenda. Thus the basic unit of computation
being scheduled is a seek, along with all the associated edge extensions. If there are
many different ways of extending an edge (using the edges currently in the chart) this
may involve substantial computation. We therefore developed a second version of the
parser with more-fine-grained parallelism, in which each step of extending an active edge

*is treated as a separate task which is placed on the agenda. We present some comparis-
ons of these two algorithms below.

There was one complication which arose in the parallel implementations: a race
condition in the application of the "fundamental rule". Suppose processor P1 is adding an
active edge to the chart from node n1 to n2 with the label A -+ W X. Y Z and, at the same

* time, processor P2 is adding an inactive edge from node n2 to n3 with the label Y. Each
processor, when it is finished adding its edge, will check the chart for possible

wrinuen by ean Mark Gawron

-3-

• - %-

, -.-%. " . ' . ' " ,. - ..-- ",' -".°- .- - ." " ,,. .' -.-.- ,. .," ' ',"., ' ,

application of the fundamental rule involving that edge. P1 finds the inactive edge
needed to further extend the active edge it just created; similarly, P,. finds the active edge
which can be extended using the inactive edge it just created. Both processors therefore
end up trying to extend the edge A -+ W X. Y Z, and we create duplicate copies of the
extended edge A -- W X Y. Z. This race condition can be avoided by assigning a unique
(monotonically increasing) number to each edge and by applying the fundamental rule
only if the edge in the chart is older (has a smaller number) than the edge just added by
the processor.

As we noted above, the context-free grammars are augmented by procedural restric-
tions. These restrictions are coded in PROTEUS Restriction Language and then com-
piled into LISP. A restriction either succeeds or fails, and in addition may assign
features to the edge currently being built. Restrictions may examine the substructure
through which an edge was built up from other edges, and can test for features on these
constituent edges. There is no dependence on implicit context (e.g., variables set by
another restriction). As a result, the restrictions impose no complications on the parallel
scheduling; they are simply invoked as part of the process of extending an edge.

5. Grammars

These algorithms were tested on four grammars:

(1) A "benchmark" grammar:
S---XXXXXXXXXXXX

X -+ "a" I "b" I "c" I "d" I "e" I 'f' I "g" I "h" I 'i' I "j"

(2) A very small English grammar, taken from [Grishman 1986] and used for teach-
ing purposes. It has 23 nonterminal symbols and 38 productions.

(3) Grammar #2, with four restrictions added.
(4) The grammar for the PROTEUS question-answering system, which includes

yes-no and wh- questions, relative and reduced relative clauses. It has 35 non-
terminal symbols and 77 productions.

6. Method

The programs were run in two ways: on a prototype parallel processor, and in simu-
lated parallel mode on a standard uniprocessor (the uniprocecessor version of ZLISP pro-
vides for relatively efficient simulation of multiple concurrent processes). The runs on
our prototype multiprocessor, the NYU Ultracomputer, were limited by the size of the
machine to 8 processors. Since we found that we could sometimes make effective use of
larger numbers of processors, most of our data was collected on the simulated parallel
system. For small numbers of processors (1-4) we had good agreement (within 10%, usu-
ally within 2%) between the speed-ups obtained on the Ultracomputer and under simula-
tion.

4

'For larger numbers of processors (5-8) the speed-up with the Ultracornputer was consistently below that with the simulator
TIhis was due, we believe. to memory contention in the Ultracomputer. This ontention is a property of the current bus-based proto-
type and would be greatly reduced in a machine using the target, network-based architecture.

-

7. Results

We consider first the results for the test grammar, #1, analyzing the sentence

This grammar is so simple that we can readily visualize the operation of the parser and
predict the general shape of the speed-up curve. At each token of the sentence, there are
10 productions which can expand X, so 10 seek tasks are added to the agenda. If 10 pro-
cessors are available, all 10 tasks can be executed in parallel. Additional processors pro-
duce no further speed-up; having fewer processors requires some processors to perform
several tasks, reducing the speed-up. This general behavior is borne out by the curve
shown in Figure 1. Note that because the successful seek (for the production X - J)
leads to the creation of an inactive edge for X and extension of the active edge for S, and
these operations must be performed serially, the maximal parallelism is much less than
10.

The next two figures compare the effectiveness of the two algorithms -- the one with
coarse-grained parallelism (only seeks as separate tasks) and the other with finer-grain
parallelism (each seek and extend as a separate task). The finer-grain algorithm is able to
make use of more parallelism in situations where an edge can be extended in several dif-
ferent ways. On the other hand, it will have more scheduling overhead, since each
extend operation has to be entered on and removed from the agenda. We therefore can
expect the finer-grained algorithm to do better on more complex sentences, for which
many different extensions of an active edge will be possible. We also expect the finer-
grained algorithm to do better on grammars with restrictions, since the evaluation of the
restriction substantially increases the time required to extend an edge, and so reduces in
proportion the fraction of time devoted to the scheduling overhead. The expectations are
confirmed by the results shown in Figures 2 and 3. Figure 2, which shows the results
using a short sentence and grammar #2 (without restrictions), shows that neither algo-
rithm obtains substantial speed-up and that the fine-grained algorithm is in fact slightly
worse. Figure 3, which shows the results using a long sentence and grammar #3 (with
restrictions), shows that the fine-grained algorithm is performing much better.

The remaining three figures show speed-up results for the fine-grained algorithms
for grammars 2, 3, and 4. For each figure we show the speed-up for three sentences: a
very short sentence (2-3 words), an intermediate one, and a long sentence (14-15 words).
In all cases the graphs plot the number of processors vs. the true speed-up -- the speed-up
relative to the serial version of the parser. The value for I processor is therefore below 1,
reflecting the overhead in the parallel version for enforcing mutual exclusion in access to
shared data and for scheduling extend tasks.

Grammars 2 and 3 are relatively small (38 productions) and have few constraints, in
particular on adjunct placement. For short sentences these grammars therefore yield a
chart with few edges and little opportunity for parallelism. For longer sentences with

. several adjuncts, on the other hand, these grammars produce lots of parses and hence
offer much greater opportunity for parallelism. Grammar 4 is larger (77 productions) and
provides for a wide variety of sentence types (declarative, imperative, wh-question, yes-
no-question), but also has tighter constraints, including constraints on adjunct placement.
The number of edges in the chart and the opportunity for parallelism are therefore fairly

S~.9.

A' ..$.

.. .. - --. -.- . - .- .., v - .: :.:,- .- .:
v - .-,- -% . ,,.', o. -.. *S ..S.- . ,S : -,-:- " r 1 :' " " " d " : -

large for short sentences, but grow more slowly for longer sentences than with grammars
2 and 3.

These differences in grammars are reflected in the results shown in Figures 4-6. For
the small grammar without restrictions (grammar #2), the scheduling overhead for fine-
grain parallelism largely defeats the benefits of parallelism, and the overall speed-up is
small (Figure 4). For the same grammar with restrictions (grammar #3), the effect of the
scheduling overhead is reduced, as we explained above. The speed-up is modest for the
short sentences, but high (15) for the long sentence with 15 parses (Figure 5). For the
question-answering grammar (grammar #4), the speed-up is fairly consistent for short
and long sentences (Figure 6).

8. Discussion
Through relatively small changes to an existing serial chart parser, we have been

able to construct an effective parallel parsing procedure for natural language grammars.
For our largest grammar (#4), we obtained consistent speed-ups in the range of 5-7.
Grammars for more complex applications, and those allowing for ill-formed input, will
be considerably larger and we can expect higher speed-ups.

One issue which should be re-examined in the parallel environment is the effective-
ness of top-down filtering. This filtering, which is relatively inexpensive, blocks the con-
struction of a substantial number of edges and so is generally beneficial in a serial imple-
mentation. In a parallel environment, however, the filtering enforces a left-to-right
sequencing and so reduces the opportunities for parallelism. We intend in the near future
to try a version of our algorithm without top-down filtering in order to determine the bal-
ance between these two effects.

-.

... ' '

References

[Aho 1972] Alfred Aho and Jeffrey Ullman, The Theory of Parsing, Translation, and
Compiling -- Volume I: Parsing, Prentice-Hall, Englewood Cliffs, NJ, 1972.

[Cohen et al. 1982] Jacques Cohen, Timothy Hickey, and Joel Katcoff, Upper bounds for
speedup in parallel parsing, J. Assn. Comp. Mach. 29 (2), pp. 408-428, 1982.

[Fennel and Lesser 1977] R. Fennel and V. Lesser, Parallelism in Al problem solving: a
case study of Hearsay 11, IEEE Trans. Comp. C-26, pp. 98-111, 1977.

[Gottlieb et al., 1983] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P.
McAuliffe, Lawrence Rudolph, and Marc Snir, "The NYU Ultracomputer -- Designing
an MIMD Shared Memory Parallel Computer", IEEE Trans. Comp., pp. 175-189, Feb.
1983.

[Haas 1987] Andrew Haas, Parallel parsing, Talk at Workshop on JANUS and Parallel
Parsing, Feb. 24-25, 1987, Bolt Beranek and Newman, Cambridge, MA.

[Ksiezyk et al. 1987] Tomasz Ksiezyk, Ralph Grishman, and John Sterling, An equip-
ment model and its role in the interpretation of noun phrases. To appear in Proc. IJCAI-
87.

[Sarkar and Deo 1985] Dilip Sarkar and Narsingh Deo, Estimating the speedup in pars-
ing, Report CS-85-135, Computer Science Dept., Washington State University, May
1985.

[Thompson 1981] Henry Thompson, Chart parsing and rule schemata in phrase structure
grammar. Proc. 19th Annl. Meeting Assn. Computational Linguistics, Stanford, CA,
1981, 167-72.

[Thompson and Ritchie 19841 Henry Thompson and Graeme Ritchie, Implementing
natural language parsers. In Artificial Intelligence Tools, Techniques and Applications,
T. O'Shea and M. Eisenstadt, eds., Harper and Row, New York, 1984.

[Weischedel and Sondheimer 1983] Ralph M. Weischedel and Norman K. Sondheimer,
Meta-rules as a Basis for Processing Ill-Formed Input. Am. J. Computational Linguistics
9 (3-4), 1983, pp. 161-177.

.7-

f.....

...........~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ "r ' w V ._ .. tppt { "'"""'''" -

I 's

C 10,if

Figue 1 Sped-u (rlatie t seial arsr) or gammr # andsenenc

i i i i j"

Ow'

~yV7Mv~VyV~ T%

N

..

Figure 2. Speed-up (relative to serial parser) for grammar #2 (small grammar without res-
trictions) on a 3-word sentence for the coarse-grained algorithm ("SEMP") and the fine-
grained algorithm ("SEMMOD").

6 28

Figure 3. Speed-up (relative to serial parser) for grammar #3 (small grammar with res-
trictions) on a 14-word sentence for the coarse-grained algorithm ("SEMP") and the
fine-grained alg.-rithm ("SEMMOD").

/O

- - VT\ i ~.~ V ~ ' - -3

,22.

16 1

Figure 4. Speed-up (relative to serial parser) for grammar #2 (small grammar wtotrs
trictions) using the fine-grained algorithm for three sentences: a 10-word sentence (curve
1), a 3-word sentence (curve 2), and a 14-word sentence (curve 3).

ItI

40 s

Fiue5 pe-p(eaiet eilprer o rm a 3(ml rm a ihrs

trcin)uigtefn-rie loih ortresnecs 4wr etne(uv

1), ai 5-odsnec crv) n -o etne(uv)

AI

//LAIEr b

t . w 'Ww w w w ww l - Wv
C -- - 7.

